Import penetration and returns to tasks: Recent evidence from the Peruvian labour market

E. J. Casabianca^{*}, A. Lo Turco \diamond , C. Pigini \diamond

*Prometeia; ^{\$} Università Politecnica delle Marche.

Ancona, 13-14 Settembre 2019

イロト イポト イヨト イヨト

- increasing low- and middle income countries active participation in global trade and production network (Hanson 2012)
- "trade in tasks", rather than trade in goods (Grossman and Rossi-Hansberg 2006; Baldwin 2006)
- recent work on advanced economies: trade effects shaped by the workers' tasks (Baumgarten et al 2013; Ebenstein et al 2014)

ヘロン 人間 とくほ とくほ とう

Research question: Is the wage effect of import penetration shaped by labour tasks in developing countries? **Contribution:**

- heterogeneous effects of industry/occupation-specific import exposure according to jobs' task intensity in the context of an emerging economy.
- jointly address the potential endogeneity of the import penetration measures and of workers'selection into task intensities
- provide evidence on the Peruvian labour market.

ヘロン 人間 とくほ とくほ とう

ъ

- among the fastest growing developing economies
- BUT decline in the share of manufacturing value added over GDP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

Data

Worker level data

• 2004-2009 waves of the Encuesta Permanente de Empleo (EPE). INEI Peru (EPE)

Industry level import penetration

- imports (and exports) WITS-COMTRADE online database at the 3-digit level of the ISIC Rev. 3 classification
- production levels from UNIDO
 - Industry-specific import penetration measure

$$IP_{jt} = \frac{M_{jt}}{Y_{jt} - X_{jt} + M_{jt}}, \quad j = 1, \dots, J, \ t = 1, \dots, T$$

Occupation-specific import penetration measure

$$IP_{kt} = \sum_{j=1}^{J} \alpha_{kj2004} IP_{jt}, \quad k = 1, ..., K$$

ヘロン 人間 とくほ とくほ とう

Occupation level task indicators

• O*NET survey from U.S. Department of Labour: 52 abilities required for each O*NET-SOC2010 occupation that we linked to occupations listed in the EPE survey.

$$MS_k = \frac{Manual_k}{Manual_k + Cognitive_k}, \quad k = 1, \dots, K.$$

ヘロアス 聞アス ほアス ほどう

ъ

Indicator	O*NET abilities
Manual	Arm-hand steadiness, Manual dexterity, Finger dexterity,
	Control precision, Multilimb coordination, Response orientation,
	Rate control, Reaction time, Wrist-finger speed, Stamina,
	Speed of limb movement, Extent flexibility, Dynamic flexibility,
	Gross body coordination, Gross body equilibrium, Static strength,
	Explosive strength, Dynamic strength, Trunk strength
	Perceptual speed, Spatial orientation, Visualization,
	Selective attention, Time sharing
Cognitive	Fluency of ideas, Originality, Problem sensitivity,
	Deductive reasoning, Inductive reasoning, Information ordering,
	Category flexibility, Mathematical reasoning, Number facility
	Memorization, Speed of closure, Speech recognition, Speech clarity

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

	Architects and engineers, nec	Chemical and physical science technicians	Plumbers and pipe fitters	Weavers, knitters and related workers
MS	0.270	0.422	0.646	0.847
Manual	0.195	0.239	0.356	0.279
Cognitive	0.404	0.327	0.195	0.050

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

For worker *i*, employed in occupation *k*, sector *j* at time *t*, with i = 1, ..., n, k = 1, ..., K, j = 1, ..., J, and t = 1, ..., T, the log-wage (W) equation we consider is

$$W_{ilt} = MS_k \gamma_{MS} + IP_{lt-1} \gamma_{IP} + IP_{lt-1} \times MS_k \gamma + X'_I \beta + D'_I \alpha_1 + Z'_t \alpha_2 + \varepsilon_{ilt}$$
(0)

- MS_k , the manual intensity in occupation k,
- IP_{it-1} , the import penetration ratio in industry I = j or occupation I = k and year t 1, for k = 1, ..., K, j = 1, ..., J, t = 1, ..., T
- X_i contains worker *i* personal characteristics,
- D_l is a matrix of dummy variables to control for 3-digit occupation (l = k) or 3-digit industry (l = j) fixed-effects,
- **Z**_t is a matrix of dummy variables to control for time fixed effects
- ε_{ilt} is a zero mean error term.

イロン 不良 とくほう 不良 とう

- Endogeneity of IP_{tt} : $IV_{tt} = EXP_{tt}^{US}$ sectoral share of U.S. exports going to non Latin American and Caribbean (LAC) countries on total U.S. production. TSLS.
- Endogeneity of MS_k : Klein and Vella (2010) exploiting heteroskedasticity as a source of additional exogenous variation; KV estimator: control function approach where ρ_{MS} captures the unobserved correlation between the intensity of manual tasks workers perform on the job and the level of earnings they receive.
- Endogeneity of IP_{lt} and MS_k Jointly addressed by the KV-IV estimator. In addition to ρ_{MS} , ρ_{IP} captures the correlation arising from the reverse causality between earnings and the degree of import competition.

ヘロト 人間 とくほ とくほ とう

3

	OLS	OLS	TSLS	TSLS	KV	KV-IV
	[1]	[2]	[3]	[4]	[5]	[6]
IP	0.064	0.139*	0.049	0.128	0.132*	0.132*
	[0.051]	[0.072]	[0.071]	[0.106]	[0.073]	[0.072]
$IP \times MS$		-0.109		-0.101	-0.099	-0.098
		[0.077]		[0.094]	[0.078]	[0.078]
MS	0.044***	0.063***	0.044***	0.061***	0.056***	0.056***
	[0.013]	[0.018]	[0.013]	[0.021]	[0.026]	[0.021]
$ ho_{IP}$						0.000
						[0.000]
$ ho_{MS}$					0.004	0.004
					[0.004]	[0.004]
No. Obs.	15678	15678	15678	15678	15678	15678

ヘロト 人間 とくほとくほとう

Wage equation - Occupation-specific IP baseline model

	OLS	OLS	TSLS	TSLS	KV	KV-IV
	[1]	[2]	[3]	[4]	[5]	[6]
IP	0.002	0.570***	0.313	2.271***	0.571***	0.752***
	[0.038]	[0.123]	[0.206]	[0.504]	[0.130]	[0.207]
$IP \times MS$		-0.851***		-2.717***	-0.852***	-1.026***
		[0.203]		[0.591]	[0.203]	[0.291]
MS	0.016	0.023	-0.020	0.103*	0.024	0.052
	[0.044]	[0.043]	[0.048]	[0.056]	[0.043]	[0.045]
ριρ						-0.005***
						[0.001]
$ ho_{MS}$					-0.000	0.000
					[0.000]	[0.000]
No. Obs.	78281	78281	78281	78281	78281	78281

ヘロト ヘアト ヘビト ヘビト

Marginal effects *IP* - (a) Industry-specific and (b) Occupation-specific baseline models, EPE 2004 - 2009

イロト イポト イヨト イヨト

э

	Industry-specific IP	Occupation-specific IP	
	KV-IV	KV-IV	
	[1]	[2]	
IP _{Kap}	0.363***	1.096***	
	[0.124]	[0.312]	
$IP_{Kap} \times MS$	-0.157	-1.834***	
	[0.104]	[0.467]	
IP _{Oth}	0.023	0.118	
	[0.076]	[0.488]	
$IP_{Oth} \times MS$	-0.024	-0.202	
	[0.074]	[0.655]	
MS	0.062***	0.063	
	[0.021]	[0.046]	
PIPKan	-0.001	-0.000	
Nap	[0.001]	[0.000]	
PIPOW	-0.001	-0.000**	
· ·· Offi	[0.001]	[0.000]	
DIAC	0.003	-0.000	
1 1013	[0.004]	[0.000]	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

Marginal effects IP_{Kap} - (a) industry and (b) occupation-specific baseline models, EPE 2004 - 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

ъ

- Instrumental variables: relative change of U.S. comparative advantage and market access *vis-à-vis* that of Peru (Autor, Dorn and Hanson, 2013) and predicted transport costs from US data (Hummels, 2014).
- Model misspecification: drop 2009; pure cross-section; quadratic terms of IP and MS; Heckman two-step.
- Omitted variables: technological change; exports; informal labour.
- Alternative specification: relative wage.

イロト イロト イヨト イヨト

- sizeable effect of occupation-specific import exposure
- task intensity of occupations turns relevant and reveals higher gains for workers in cognitive intensive occupations and small losses for a tiny share of highly manual intensive jobs
- evidence is mainly driven by the evolution of capital and intermediate imports

ヘロアス 聞アス ほアス ほどう

Thank you!

・ロト ・四ト ・ヨト ・ヨト

E 990